Spreadsheet Excel, Perencanaan Pondasi Telapak Persegi Panjang

imagesPad foundation atau pondasi telapak adalah pondasi yang biasa digunakan untuk menumpu kolom bangunan, tugu, menara, tangki air, cerobong asap dan beberapa bangunan sipil lainnya. Pondasi ini berbentuk papan yang terbuat dari beton bertulang dan diletakan di atas tanah pada kedalaman tertentu dengan dimensi dan ketebalan yang tertentu pula. Biasanya, pondasi ini dibuat dengan dimensi yang lebih besar daripada kolom diatasnya, Hal ini bertujuan agar beban yang diteruskan ke pondasi dapat disebarkan keluasan tanah yang lebih besar dibawahnya.

Karena dimensi ukuran dari pondasi dibuat lebih besar daripada kolom diatasnya, maka secara fisik terlihat seperti alas kaki atau sepatu kolom, sehingga pondasi ini bisa disebut juga sebagai pondasi kaki pelat atau “foot plate”

 

Image 8 Image 4

Secara geometrik, bentuk dari pondasi telapak ini dapat dibuat dengan dua macam bentuk, yaitu dengan bentuk bujur sangkar atau persegi panjang.

Pondasi dengan bentuk bujur sangkar biasanya digunakan jika beban yang bekerja pada pondasi berupa beban tekan sentris (P) dan tanpa momen (M), (atau jika ada tapi momennya kecil). Namun apabila beban yang bekerja pada pondasi berupa beban tekan sentris (P) dan momen (M) secara bersamaan, maka biasanya digunakan pondasi persegi panjang.

Lho mengapa demikian ?

Lihat ilustrasi berikut,

 

P2

Nah, kira-kira lebih sulit mana, menggulingkan pondasi di gambar 1 atau pondasi di gambar 2 ? smile_regular

Dari sini saja sudah terlihat mengapa harus digunakan pondasi berbentuk persegi panjang. Untuk beban tekan sentris, pondasi dengan bentuk bujur sangkar cukup stabil menahan beban. Namun, apabila selain beban tekan ini ada lagi beban momen (M) yang menyebabkan penggulingan seperti gambar diatas, maka bentuk pondasi harus disiasati agar bisa menahan penggulingan, dengan cara memperbesar salah satu sisi bagian pondasi yang lemah atau tidak aman terhadap beban yang menggulingkannya.

 

P3

 

Dan tentu saja, selain luas penampang yang diperbesar, ada faktor lain yang juga harus dijadikan perhatian agar pondasi yang kita buat nantinya aman dan stabil terhadap beban yang bekerja. “Aman” dalam artian tidak ngguling, tidak nggeser dan tidak ambles yang mengakibatkan kerusakan struktur dibagian atasnya, seperti kolom retak, dinding retak, keramik lantai pecah-pecah dan lain sebagainya.

Apakah faktor tersebut?

Faktor tersebut adalah “daya dukung tanah”.

Kekuatan atau daya dukung tanah sangat menentukan besar dan kecilnya ukuran pondasi. Sebagai contoh untuk jenis pondasi telapak tunggal, semakin kuat daya dukung tanah, semakin kecil ukuran pondasi yang direncanakan. Sebaliknya, semakin lemah daya dukung tanahnya, maka semakin besar ukuran pondasi yang akan direncanakan. Untuk tanah dengan daya dukung lemah, sebaiknya tidak menggunakan pondasi ini, karena desain area penampangnya pasti akan besar sehingga tidak efektif di pelaksanaan dan boros di keuangan. Sobat bisa menggunakan alternatif pondasi lain seperti pondasi sumuran atau bahkan tiang pancang jika daya dukung tanahnya sangat rendah sekali.

 

Terus bagaimana caranya agar kita bisa tahu bahwa tanah tempat pondasi tersebut diletakan mempunyai daya dukung yang kuat? smile_sad

smile_regular bisa melalui beberapa usaha, seperti,

– Sobat bisa merujuk pada peraturan bangunan setempat yang dikeluarkan oleh lembaga terkait.

– Pengalaman tentang membuat pondasi yang sudah ada, atau keterangan yang berkaitan dengan pondasi disekitarnya.

– tanya tukang (tidak dianjurkan, tapi boleh dicoba sebagai bahan masukan dan bertukar fikiran) smile_regular

– Pengujian atau pemeriksaan tanah, baik di laboratorium atau di lapangan —> ini yang paling di rekomendasikan

 

Nich sob… akibatnya jika pondasi sampai mengalami pergeseran atau penurunan yang melebihi batas toleransi.

 

retak1

(retak kolom struktur)

 retak2  (Retak dinding tembok)

 

Pondasi telapak, apakah nantinya didesain berbentuk bujur sangkar atau persegi panjang, yang penting adalah pondasi tersebut harus kuat menahan beban yang bekerja padanya. Dan tentu saja seperti yang sudah disinggung diatas, selain pondasi harus kuat, tanah tempat pondasi tersebut diletakan juga harus bisa memberikan daya dukung yang cukup kuat agar pondasi tidak mengalami penurunan yang melebihi batas toleransi sehingga mengakibatkan rusaknya struktur dibagian atas.

Terus bagaimana caranya agar kita tahu bahwa pondasinya kuat ? smile_sad

 

smile_omg Ya, tentu saja harus dihitung, Karena dengan menghitung kita bisa tahu dan membuktikan bahwa pondasi yang direncanakan nantinya betul-betul kuat.

Nah sobat,… salah satu cara untuk memenuhi keperluan tersebut diatas maka dibuatlah  “spreadsheet hitung pondasi” untuk mempermudah proses perhitungannya.

smile_nerd Catatan :

1. “spreadsheet perencanaan pondasi telapak persegi panjang”,  adalah seri lanjutan dari spreadsheet perencanaan pondasi tapak yang sebelumnya telah membahas mengenai “spreadsheet perencanaan pondasi telapak bujur sangkar

2. Untuk spreadsheet “perencanaan pondasi telapak persegi panjang” ini penulis tetap mengandalkan microsoft excel sebagai platform nya, selain dikarenakan pengoperasiannya yang relatif mudah, excel juga memilki kekuatan di bahasa ‘macro-nya’ dan bisa dikolaborasikan dengan visual basic sehingga hasilnya betul2 memuaskan.

 

Screenshoot Spreadsheet

 

screen1 (Input Data)

 

screen2   (Laporan Singkat Perhitungan)

screen3

    (Grafik Tegangan Tanah)

 

screen4

    (Hasil Perhitungan)

screen5

    (Hasil Perhitungan)

screen6      (Hasil Perhitungan)

final desain

   (Desain Tulangan)

 

3. Spreadsheet ini dalam analisanya tidak memperhitungkan pengaruh eksentrisitas kolom terhadap pondasi, jadi seandainya pengaruh tersebut diperhitungkan, sobat harus menghitungnya sendiri.

4. Tidak seperti “spreadsheet perencanaan pondasi telapak bujur sangkar”,  Untuk spreadsheet “perencanaan pondasi persegi panjang” ini ukuran kertas, margin, dan layout nya sudah diatur sedemikian rupa sehingga hasilnya bisa langsung dicetak dan tidak perlu di setting lagi.

 

Landasan Teori (Dasar Perencanaan)

 

isolated-footing

Dalam mendesain pondasi telapak, perencanaan pondasi harus mencakup segala aspek agar terjamin keamanan sesuai dengan persyaratan yang berlaku, misalnya, penentuan dimensi pondasi meliputi panjang, lebar dan tebal pondasi, kemudian jumlah dan jarak tulangan yang harus dipasang pada pondasi.

Adapun peraturan untuk perencanaan pondasi telapak tercantum pada SNI 03-2847-2002 merujuk pada pasal 13.12 dan pasal 17.

Jika sobat kampuz ada yang belum memiliki peraturan tersebut. Silahkan klik disini untuk download SNI 03-2847-2002

 

Garis besar perencaan Fondasi Telapak

 

1. Menentukan Dimensi Pondasi

hal yang paling penting dalam merencanakan pondasi adalah menentukan ukuran dimensi, dimana ukuran panjang, lebar dan ketebalan telapak pondasi harus ditetapkan sedemikian rupa sehingga tegangan yang terjadi pada dasar pondasi tidak melebihi daya dukung tanah dibawahnya

 

2. Mengontrol Kuat Geser 1 Arah

kerusakan akibat gaya geser 1 arah terjadi pada keadaan dimana mula-mula terjadi retak miring pada daerah beton tarik (seperti creep) lihat gambar dibawah. Akibat distribusi beban vertikal dari kolom (Pu kolom) yang diteruskan ke pondasi, maka pada bagian dasar pondasi mengalami tegangan. Akibat tegangan ini, tanah memberikan respon berupa gaya reaksi vertikal keatas (gaya geser) sebagai akibat dari adanya gaya aksi tersebut. Kombinasi beban vertikal Pu kolom (kebawah) dan gaya geser tekanan tanah keatas berlangsung sedemikian rupa sehingga sedikit demi sedikit membuat retak miring tadi semakin menjalar keatas sehingga membuat daerah beton tekan semakin mengecil. Nah…dengan semakin mengecilnya daerah beton tekan ini maka mengakibatkan beton tidak mampu menahan beban geser tanah yang menyodok/mendorong keatas, akibatnya beton tekan akan mengalami keruntuhan.

 

g2

 

Kerusakan pondasi yang diakibatkan oleh gaya geser 1 arah ini biasanya terjadi jika nilai perbandingan antara nilai a dan nilai d cukup kecil, dan selain itu, mutu beton yang digunakan juga kurang baik sehingga mengurangi kemampuan beton dalam menahan beban tekan

 

g1 

Retak pondasi yang diakibatkan oleh gaya geser 1 arah, biasanya terjadi kurang lebih sejarak d dari muka kolom, dimana d adalah tebal efektif podasi

 

3. Mengontrol Kuat Geser 2 Arah (Geser Pons)

Bisa disebut juga dengan geser pons (punching shear), dimana akibat gaya ini, pondasi mengalami kerusakan disekeliling kolom dengan jarak kurang lebih d/2

 

g3

 

4. Menghitung Tulangan Pondasi

Beban yang bekerja pada pondasi adalah beban dari reaksi tegangan tanah yang bergerak vertikal keatas akibat adanya gaya aksi vertikal kebawah (Pu) yang disalurkan oleh kolom. Tulangan pondasi dihitung berdasarkan momen maksimal yang terjadi pada pondasi dengan asumsi bahwa pondasi dianggap pelat yang terjepit dibagian tepi-tepi kolom.

Menurut SNI 03-28547 pasal 17.4.3 untuk pndasi bujur sangkar, tulangan harus tersebar merata pada seluruh lebar pondasi telapak. Tapi jika pondasi berbentuk persegi panjang, maka tulangan yang sejajar sisi panjang harus disebar merata ke seluruh lebar pondasi, sedangkan untuk tulangan yang sejajar sisi pendek dibagi menjadi 2 bagian, yaitu tulangan jalur pusat dan tulangan tepi. Untuk tulangan pada bagian jalur pusat, tulangan dipasang lebih rapat daripada tulangan di bagian jalur tepi. (lihat pasal 17.4.4)

 

pembagian jalur

5. Mengontrol Daya Dukung Pondasi

Pondasi sebagai struktur bangunan bawah yang menyangga kolom yang memikul beban-beban diatasnya (bangunan atas) harus mampu menahan beban axial terfaktor (Pu) dari kolom tersebut. Maka dari itu beban dari Pu diisyaratkan tidak boleh melebihi daya dukung dari pondasi (Pup) yang dirumuskan sebagai berikut :

Pu < Pup

Pup = Ø x 0,85 x fc’ x A

Dimana :

Pu  = Gaya aksial terfaktor kolom……. (N)

Pup  = Daya dukung pondasi yang dibebani……. (N)

fc’ = Mutu beton yang diisyaratkan……. (Mpa)

A = Luas daerah yang dibebani…….(mm2)

Dasar teori spreadsheet perhitungan pondasi telapak persegi panjang ini mengacu pada SNI 03-2487-2002, dan alur langkah perhitungan ada dalam bagan alir perencanaan pondasi yang ada dalam spreadsheet tersebut.

 

Cara Menggunakan Spreadsheet

 

Berikut adalah salah satu contoh proyek bangunan villa di daerah Tretes-Mojokerto yang pernah dihitung sama penulis dengan menggunakan spreadsheet ini. Struktur secara keseluruhan dianaliasa dengan menggunakan STAAD Pro untuk dicari gaya dalamnya, kemudian gaya dalam tersebut diolah sedemikian rupa dengan spreadsheet EBC dan ECC untuk didapatkan desain tulangan balok dan tulangan kolomnya, sedangkan untuk desain pondasi dianalisa menggunakan spreadsheet ini.

Catatan :

1. Spreadsheet ”EBC”  atau excel beam calculation adalah spreadsheet excel yang digunakan untuk menghitung kebutuhan penulangan balok. Didesain sangat simple dan bisa menampung banyak data. EBC ini lebih dikhususkan untuk STAAD karena settingan lembar input data gaya dalam disesuaikan dengan lembar output gaya dalam STAAD (gaya dalam dari frame/element ditampilkan per 1/5 bagian). Jika sobat ingin tahu seperti apa dan bagaimana EBC itu? silahkan klik di sini.

2. Sama halnya seperti spreadsheet “EBC”, cuman bedanya ECC digunakan untuk mencari desain tulangan dari kolom. ECC sendiri adalah singkatan dari excel column calculation. Spreadsheet ini belum saya share, Insya Alloh ke depan saya share ke sobat semuanya.

3. Pembahasan hanya difokuskan pada cara penggunaan spreadsheet ini yaitu untuk menghitung pondasi-nya saja. Sedangkan untuk  penggunaan EBC dan ECC dibahas di posting berikutnya, Insya Alloh…

 

full     (Tampak Depan)

 

tamapk depan     (Potongan Melintang B-B)

 

tamapk samping    (Potongan Melintang C-C)

 

dnh1

   (Denah Lantai 1)

 

dnh2

   (Denah Lantai 2)

 

dnh atap 

   (Denah Atap)

 

3d    (View 3D – STAAD Pro)

 

Kita akan mencoba mendesain pondasi pada salah satu titik tertentu. Untuk itu coba perhatikan gambar rencana denah sloof dan titik pondasi berikut ini :

 Sloof dan titik pondasi

 

Kita coba pada titik no. 41.

Data struktur :

K1   =   25/25

f’c   =   20 Mpa

fy    =   320 Mpa (U-32)

Hasil dari analisa STAAD didapat

Pu   =   323,276 KN

Mu,z  =   1,659 KN.m

Mu,x  =   -0,103 KN.m

Mu,y  =    0,017 KN.m

dari data tanah :

Berat tanah = 17,20 KN/m3

Kedalaman 1,6 m dari MT, adalah = 2 kg/cm2  =  196,133 KPa

Desain ukuran pondasi dan tulangan yang dibutuhkan?

 

Penyelesaian :

 

1. Buka spreadsheet “Perencanaan pondasi telapak persegi panjang”.

2. Masukan data rencana ke spreadsheet sesuai dengan data diatas.

    Untuk data pondasi kita coba dan kita rencanakan sebagai berikut :

    – B X L = 125 cm x 150 cm.

    – Selimut beton (sb) = 75 mm (karena berhubungan langsung dengan tanah)… lihat SNI 03-2847 pasal 9.7.1

    – Besi tulangan direncanakan dengan ukuran 13 mm (ulir 13)

    – Untuk nilai αs = 40 (karena kolomnya adalah kolom dalam, maka konstantanya adalah 40)

catatan :

αs =  suatu konstanta yang digunakan untuk menghitung Vc yang nilainya tergantung pada letak  fondasi

40 = kolom dalam

30 = kolom tepi

20  = kolom sudut

    – Tebal fondasi (ht) = 0,3 m = 30 cm

    – Tebal tanah diatas pondasi (ha) = 1,6 – 0,3 = 1,30 m

   

input data

 

3. Jika data sudah di inputkan dengan benar, sekarang coba lihat laporan singkat perhitungan di bagian bawah input data. Untuk itu geser scrool mouse ke bawah.

 

revisi1

 

Disini terlihat, bahwasanya pondasi dengan ukuran 1,25 x 1,50, tidak bisa diaplikasikan, karena tegangan tanah yang terjadi dibawah pondasi melampaui daya dukung tanahnya. Walaupun daya dukung pondasi terhadap beban okey, namun tetap saja pondasi dengan ukuran sekian tidak boleh dilaksanakan karena pondasi bisa mengalami penurunan, sehingga bisa membahayakan struktur diatasnya.

 

4. Sekarang geser scroll mouse kebawah lagi untuk melihat tegangan tanahnya.

 

grafik teg tnh

 

Garis tegangan tanah (warna biru) diatas garis daya dukung tanah (warna merah). ini menunjukan tegangan tanah melampaui daya dukung tanah yang di izinkan, sehingga ukuran dimensi pondasi harus diperbesar

 

5. Sekarang kita ganti ukuran pondasi menjadi 1,30 m x 1,60 m, dengan tebal 0,30 m

 

laporan singkat2

 

6. Jika sudah, sekarang geser scroll mouse kebawah untuk melihat laporan singkatnya. Hasilnya sebagai berikut :

 

revisi2

 grafik teg tnh2

 

Daya dukung tanah lebih besar dari tegangan tanah yang terjadi. Ketahanan beton pondasi cukup kuat atau lebih besar dari gaya geser 1 arah dan 2 arah, serta daya dukung pondasi aman terhadap beban yang bekerja (Pu > Pu,k). Sehingga pondasi dengan ukuran (1,30 x 1,60) m dengan tebal = 0,3 m bisa untuk diaplikasikan.

Tulangan pondasi didesain :

Sejajar Arah Panjang : D13 – 139 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 11 buah)

Arah melintang (di jalur pusat) : D13 – 164 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 9 buah)

  – Arah Tepi (kanan) : D13 – 450 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 1 buah)

  – Arah Tepi (kiri) : D13 – 450 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 1 buah)

Mungkin sobat bingung dengan format penulisan penulangan diatas, biar tidak bingung, sobat klik tab sheet “Desain Tulangan”. (Lihat hasil penulangannya dalam bentuk grafik)

 

tool

 

revisi3

 

7. Sekarang kita cek panjang penyaluran tegangan tulangan, untuk itu klik tab sheet “Hasil Perhitungan”. Geser scroll mouse ke bawah sampai di halaman 9

 

panjang penyaluran tegangan 

Perhatikan notasi yang saya beri kotak warna biru, didalamnya ada kotak yang berwarna orange. Kotak tersebut adalah kotak input data yang harus di isi untuk mengetahui panjang tegangan tulangan yang terjadi.

Adapun penjelasan notasi tersebut diatas adalah sebagai berikut :

α    =   Faktor lokasi penulangan

1,3 jika tulangan berada diatas beton setebal  ≥ 300 mm

1,0 untuk tulangan lain

(karena beton segar dibawah tulangan (selimut beton) adalah = 75 mm, maka α = 1)

 

β   =   Faktor pelapis

– 1,5 jika batang atau kawat tulangan berlapis epoksi dengan selimut beton kurang dari 3 db atau spasi bersih tulangan kurang dari 6db.

– 1,2 jika batang atau tulangan berlapis epoksi lainnya

– 1,0 jika tulangan tanpa epoksi

(karena tulangan kita tanpa epoksi, maka nilai β = 1,0)

 

γ   =   Faktor ukuran batang tulangan

– 0,8 jika tulangannya D19 atau yang lebih kecil

– 1,0 jika tulangannya D22 atau yang lebih besar

(karena tulangan yang kita pakai adalh D13, maka γ = 0,8)

          

λ   =   Faktor beton agregat ringan

– 1,3 jika digunakan beton agregat ringan

– 1,0 jika digunakan beton normal

(karena yang kita gunakan adalah beton normal, maka λ = 1,0)

 

c   =   Spasi antar tulangan atau dimensi selimut beton (diambil nilai terkecil)… (mm)

( c = 75 mm)

 

Ktr   =   Faktor tulangan sengkang, Ktr = (Atr x fyt) / (10 x s x n)

(Untuk penyederhaan,  boleh dipakai Ktr = 0)

λd   =  Panjang penyaluran tegangan

λd > 300

 

Catatan :

Penjelasan secara lengkap mengenai notasi2 ini, sobat bisa merujuk ke SNI 03-2847,  pasal 14.2.3

 

hasil1

 

Karena panjang penyaluran λd = 267,90 < 300, maka tidak memenuhi persyaratan, untuk itu tulangan diganti dengan diameter 16 mm (D16).

Sehingga λd = 329,72 > 300… (Ok!)

 

hasil2

 

Oleh karena terjadi perubahan pada rencana ukuran batang tulangan, maka hitungan dan hasil desain tulangan secara keseluruhan berubah.

Berikut adalah hasil desain setelah terjadi perubahan ukuran tulangan (lihat gambar bawah) :

Rencana dimensi pondasi = (1,30 x 1,60) m, tebal = 30 cm

Penulangan pondasi :

Sejajar Arah Panjang : D16 – 211 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 8 buah)

Arah melintang (di jalur pusat) : D16 – 254 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 6 buah)

  – Arah Tepi (kanan) : D16 – 450 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 1 buah)

  – Arah Tepi (kiri) : D16 – 450 (Jika dikonversikan ke parameter jumlah, maka jumlahnya ada = 1 buah)

 

 

revisi4

Untuk kemudahan dilapangan, maka tulangan dipasang sebagai berikut :

Sejajar arah panjang : D16 – 200

Sejajar arah pendek  : D16 – 250

 

revisi5

 

Okey sob, sampai disini pembahasan kita,

sobat bisa bereksplorasi untuk mendesain pondasi tapak dengan spreadsheet ini,…

Sekian,  dan semoga bermanfaat .

 

Ups sampai lupa, untuk download spreadsheet ini, sobat klik aja ikon rumah dibawah ini smile_regular

 

  

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, “Courier New”, courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }Download spreadsheet

atau klik di sini

 

Jika ada pertanyaan, kritik atau saran seputar spreadsheet ini, silahkan langsung disampaikan via email atau blog, sms juga boleh. Pertanyaan yang bisa saya jawab akan saya jawab (tentunya sebatas pengetahuan saya), dan jika tidak maka akan saya jadikan PR, harap maklum karena saya sendiri masih belajar hehe smile_regular

Excel Untuk Teknik Sipil (Part-2) – EBC For STAAD

Dikesempatan kali ini saya akan coba untuk berbagi spreadsheet buatan saya yang bernama “Excel beam calculation”.

Apa itu “Excel beam Calculation” ?

Excel beam calculation (EBC) adalah spreadsheet program hitung balok yang dibuat dengan bantuan microsoft excel. Keluaran (output) dari program ini adalah luas dan jumlah kebutuhan tulangan lentur (utama), geser dan torsi dari sebuah balok. Selain itu, juga dilengkapi dengan kontrol regangan beton dan baja tulangan untuk mengetahui status desain tulangan yang terpasang pada balok tersebut apakah kurang (under reinforcement), seimbang (balanced reinforcement) atau kah malah berlebih (over reinforcement).

Sekedar sebagai catatan,

keadaan balok yang under, balanced dan over reinforcement sangat penting untuk dikontrol dan diketahui, karena ini hubungannya dengan cara balok dalam mengalami keruntuhan, apakah nanti balok tersebut bersifat ductile failure (runtuh tarik), balance (runtuh seimbang), ataukah brittle failure (runtuh tekan).

ductile failure adalah mode keruntuhan yang diharapkan karena memberikan tanda berupa lendutan sebelum balok mengalami keruntuhan, hal ini dikarenakan baja tulangannya sudah leleh terlebih dahulu sebelum beton mencapai regangan maksimalnya (dengan kata lain, beton belum hancur tapi baja tulangannya sudah leleh). Keadaan demikian ini “menguntungkan” bagi kepentingan kelangsungan hidup manusia, karena ada peringatan tentang lendutan membesar sebelum runtuh.

balance adalah mode keruntuhan yang paling diharapkan dan sangat ideal, karena hancurnya beton bersamaan dengan lelehnya baja tulangan. Karena beton dan baja rusak secara bersamaan, maka kekuatan beton dan baja tulangan dapat dimanfaatkan sepenuhnya, sehingga penggunaan material beton dan baja tersebut jadi lebih hemat. (Tapi dalam prakteknya sangat sulit dicapai karena beberapa faktor,… apakah faktor-faktor tersebut ? nanti akan saya akan jelaskan di episode berikutnya hehe :D)

brittle failure adalah keadaan yang paling tidak diharapkan dan harus dihindari, karena beton lebih dulu hancur sebelum melelehnya baja tulangan. Hal ini terjadi karena tulangannya terlalu kuat (over reinforced), sehingga saat betonnya akan hancur baja tulangannya masih belum leleh, sehingga ketika diatas balok diberi tambahan beban yang besar, maka tak ayal lagi akan grubyaaaaaak……  (terjadilah keruntuhan mendadak tanpa peringatan terlebih dahulu),… bisa almarhum tuh orang orang dibawahnya kejatuhan balok beton hehe… 😀

 

Penjelasan secara lengkap mengenai ini akan saya jelaskan di posting saya berikutnya yang berjudul “ Perencanaan Balok Dengan Tulangan Rangkap-Part 1

 

Input program EBC adalah data material balok meliputi lebar dan tinggi penampang balok (b dan h), selimut beton (d), jarak titik berat tulangan tarik ke serat tepi beton tarik  (ds), kuat karakterisitik beton (fc), mutu baja tulangan (fy dan fys), ukuran diameter tulangan rencana (reinf), serta  momen ultimite (Mu), geser ultimate (Vu) dan torsi ultimate (Tu) yang terjadi pada balok.

Untuk Mu, Vu dan Tu, dihitung sendiri melalui hitungan manual atau melalui bantuan software analisa struktur seperti SAP, STAAD, ETABS,… dan lain sebagainya.

Tidak ada yang istimewa dari program EBC ini dari sisi interface. Interface EBC hanyalah sekumpulan data yang ditata sedemikian rupa didalam tabel-tabel (cell) yang disediakan oleh excel.

Mengapa demikian?

Karena memang tujuan dari pembuatan EBC ini difokuskan untuk menampung banyak data, yaitu data2 element balok struktur dan gaya dalam dari element2 balok struktur tersebut.

Data2 tersebut kemudian diolah sedemikian rupa dalam tabel excel untuk didapatkan desain tulangannya.

Berikut adalah screenshoot program EBC

 

EBC1

EBC4

 

EBC3

 

EBC5

 

Terus bagaimana cara penggunaan Spreadsheet (program) EBC ini ?

Sebelum kita akan membahas lebih lanjut mengenai bagaimana cara penggunaan EBC ini, Mungkin ada baiknya sobat download dulu file staad.rar dibawah ini sebagai bahan untuk pembahasan.

download : staad.rar

(Catatan : setelah didownload, extract “staad.rar, kemudian buka file “structure1.std” dengan menggunakan STAAD)

 

1. Katakanlah saya akan menganalisa sebuah pemodelan struktur portal dengan bentuk geometri seperti berikut ini (file ‘structure1.std)

 

PORTAL 

PORTAL2

  

  • Element/member balok = 7

         Dimensi element/member balok

         R2 = 20/35, member : 10, 11, 12, 13

         R3 = 20/30, member :2, 5, 8

  • Element/member kolom = 6

         R1 = 30/30, member : 1, 3, 4, 6, 7, 9

Frame portal terdiri dari balok – kolom dengan ukuran seperti diatas. Lebar antar kolom arah – X = 4 m, arah – Y = 5 m, dan tinggi portal = 4 m, diatasnya terdapat pelat setebal t = 12 cm yang menyangga beban hidup sebesar 100 kg/m2.

 

Untuk mencari gaya-gaya dalam yang terjadi, maka saya menggunakan STAAD Pro sebagai program bantu untuk menganalisanya.

Lhooo,… kenapa yang dipakai STAAD Pro? bukan SAP, ETABS atau yang lainnya ?…

ya sebenarnya pakai SAP, ETABS ataupun yang lainnya tidak jadi masalah, hanya saja  EBC yang saya buat lembar input data untuk memasukan data gaya dalam sudah disesuaikan dengan settingan lembar output gaya dalam dari STAAD, jadi tinggal di copy paste aja gitu,… hehehe ^_^

 

Yup,.. kembali ke topik.

1. Dari analisa STAAD didapat gaya2 dalam (momen, geser dan torsi) sebagai berikut :

 

output

 

Catatan :

1. Untuk mengakses output gaya axial, momen, geser dan torsi seperti diatas, bisa didapat melalui menu Post Procesing. (lihat gambar bawah)

GB3 

2. Setting ‘Force Units” agar ouput satuan untuk distance, axial forces, shear forces dan bending moment berturut-turut yaitu mm, N, N, dan KNm. Untuk keperluan ini, sobat bisa mengaksesnya di tools ‘Change Graphical Display Units’

3. Saya tidak akan membahas lagi dasar-dasar operasi STAAD, karena saya anggap sobat sudah paham. Bagi sobat yang belum paham silahkan sobat pelajari di posting “Perencanaan Ruko Dua Lantai Dengan Program Bantu STAAD Pro Part 1 – 4

 

2. Hasil output tersebut diatas kemudian di copy dengan cara mengklik kiri 2x di pojok kiri atas (tepatnya ditulisan “beam”) sehingga semua data terselect dengan blok berwarna hitam, kemudian dilanjutkan dengan meng klik kanan dan pilih Copy

 

GB2

 

3. Buka program Excel, kemudian Paste – kan  hasil copy tersebut (hasilnya seperti gambar dibawah ini).

 

output excel

 

4. Sekarang seleksi dan copy kembali data hasil paste tersebut, tapi hanya pada bagian distance dan gaya dalamnya saja. (lihat gambar dibawah)

 

output excel2

 

5. Buka EBC – kemudian klik pada tab sheet “OUTPUT STAAD” kemudian Paste kan hasil Copy tadi ke sheet ini.

 

gb1

 

 A1

 

sehingga hasilnya seperti ini :

 

A2

 

6. Klik tab sheet “Rencana Balok”, kemudian inputkan data rencana balok sesuai dengan data yang telah kita masukan pada STAAD, yaitu TYPE 2 =R2 = 20/35 dan TYPE =R3 = 20/30.

Ketik di cell (A,2) = 2

Ketik di cell (B,2) dan (C,2) masing-masing = 200 dan 350

Ketik di cell (A,3) = 3

Ketik di cell (B,3) dan (C,3) masing-masing = 200 dan 300

A3

 A5

Catatan :

R1 = 30/30 tidak usah dimasukan karena R1 adalah type kolom. EBC hanya untuk desain balok bukan desain kolom, jadi R1 tidak dianalisa)

Okey!, sampai step ini kita telah selesai menginput semua data yang diperlukan, yaitu data gaya dalam dan data balok rencana. Sekarang saatnya untukmengetahui hasil desain tulangan dari masing2 element balok.

 

7. Klik sheet “TulanganLentur”. Select atau blok cell (A,16-18) sampai dengan (BD,16-18)kemudian copy lah sampai 7x kebawah (cat : karena jumlah baloknya ada 7, jadi ngopy nya harus 7). Lihat gambar bawah.

 

A6

Hasilnya seperti ini,

 

A7

 

8. Ganti atau isi membernya dengan nomor element balok yang akan dianalisa yaitu element 2, 5, 8, 10, 11, 12, 13. Kemudian ganti typenya sesuai dengan type element/member dari STAAD, yaitu type 2 (20/35) untuk member10, 11, 12, 13 dan type 3 (20/30) untuk member 2, 5, 8 (Lihat gambar dibawah).

 

A8

 

Sekarang anda perhatikan kolom yang saya beri kotak memanjang kebawah berwarna hijau. Kolom tersebut adalah kolom untuk input data ds dan reinf.

ds adalah Jarak titik berat tulangan tarik sampai serat tepi beton beton bagian tarik. Sedangkan reinf adalah ukuran diameter tulangan rencana.

reinf  = 13, maksudnya :

Tulangan utama yang saya rencanakan berdiameter 13 mm

ds = 44.5, maksudnya :

selimut beton + diameter begel +1/2 (diameter tulangan utama)

= 30 mm + 8mm + 1/2 (13)

= 44.5 mm

 

9. Untuk melihat hasil desain tulangan, geser slider ke kekanan. Hasilnya seperti gambar dibawah.

 

A9

 

Catatan :

Dari tabel diatas, terlihat bahwa balok member 2 didesain dengan tulangan tumpuan 2 D 13 atas-bawah dan lapangan 2 D 13 atas-bawah. Sedangkan lebar ukuran balok member ini adalah 20 cm, jadi jarak bersih antar tulangan pada arah mendatar sangat mencukupi sekali (9.6-1 SNI 03-2847-2002).

Nah,… kalau seandainya (ini misalkan saja lho ya), balok member 2 ini menerima momen yang lebih besar lagi (ingat : ini hanya misal), sehingga desain tulangan yang didapat didaerah lapangan adalah  6 D 13 (bawah), maka ds seperti yang saya jelaskan dilangkah no 8 harus di cek ulang

mengapa dicek ulang :

Karena space balok tidak cukup untuk 6 tulangan jika dipasang dalam 1 lapis. Sehingga beberapa tulangan harus dipasang satu lapis lagi diatasnya, untuk menghindari jarak antar tulangan yang terlalu rapat pada arah mendatar

Dengan dipasangnya 1 lapis tulangan diatasnya maka jarak titik berat tulangan tarik ke serat tepi beton bagian tarik (ds) otomatis akan berubah. (coba lihat gambar bawah)

 

beam2

ds = selimut beton + diameter sengkang + diameter tulangan utama + 1/2 (jarak antar tulangan arah vertikal)

ds = 30 mm + 8 mm + 13 mm + 1/2 (25mm)

ds = 64 mm

Jadi nilai ds nya tidak 44.5 mm lagi sob,… tapi  64 mm (Bila seandainya desain tulangan balok 6 D 13,…)

 

 

Sekedar sebagai catatan, bahwa jarak minimal antar tulangan mendatar harus lebih besar dari 25 mm dan disarankan lebih besar dari 40 mm. (9.6-2 SNI 03-2847-2002). Sedangkan untuk arah yang vertical minimal sejarak 25 mm

Dengan berubahnya ds, maka beberapa variabel yang lain akan terpengaruh, sobat harus cek lagi. Kemudian perhatikan lagi regangan bajanya saat beban ultimate, apakah semua tulangan sudah leleh (cek yang lapis atas), jika yang atas sudah leleh maka yang bawah sudah pasti leleh.

 

Nah,.. selesai, mudahkan sob,…smile_teeth

Spreadsheet EBC ini intinya cuman copy-paste aja kok. Sobat tinggal copy output gaya dalam dari STAAD ke sheet “OUTPUT STAAD” program EBC, kemudian masukan rencana dimensi balok, setelah itu dengan sedikit edit dan copy-paste di sheet tulangan lentur, geser dan torsi, maka desain tulangan akan didapatkan.

Terus bagaimana untuk mendapatkan tulangan geser dan torsi ?

Tinggal CopyPaste aja sob,… hehe. Langkahnya sama persis seperti langkah nomor 7

 

geser Tulangan geser

 

torsi output Tulangan torsi

 

EBC akan menghitung momen pikul yang harus ditahan oleh penampang, jika momen pikul yang harus ditahan penampang (K) lebih besar dari momen pikul maksimal yang sanggup ditahan oleh penampang (Kmaks), maka balok harus dihitung dengan tulangan rangkap atau penampang balok harus diperbesar,

EBC tidak akan menganalisa balok yang bertulangan rangkap, oleh karena itu sebaiknya penampang balok diperbesar saja. Namun seandainya jika sobat tidak ingin merubah penampang yang berarti balok harus diberi penulangan rangkap, maka sobat bisa menggunakan EBC2, dimana file dan materinya akan saya posting di edisi berikutnya.

Insya Alloh,…

 

VERIFIKASI

Tentunya hasil desain yang didapat tidak langsung serta merta dianggap valid dan bisa langsung diaplikasikan dilapangan, harus ada check ulang terhadap hasil desain sebagai bentuk“control” sebelum hasil desain tersebut benar-benar akan diaplikasikan. Nah,… sob, untuk keperluan itulah kita butuh adanya “sesuatu”

Apakah “sesuatu” tersebut?

Sesuatu tersebut adalah : “Verifikasi

Mengapa perlu verifikasi ?

karena dengan melakukan verifikasi berarti kita telah melakukan peninjauan kembali terhadap hasil yang didapat, sehingga dengan begitu akan lebih menjaga mutu atau kualitas desain dan bisa dipertanggungjawabkan.

 

Okey!, sekarang kita akan verifikasi kembali hasil desain yang didapat.

Kita ambil contoh pada balok nomor 2.

Dimensi balok : 20/30 

Panjang balok : 3.00 m

  • Check desain tulangan terpasang dan tinggi minimal penampang

dt1

 

Dari analisa yang dilakukan oleh EBC, didapat

d min                              : 146.562 mm = 14.65 cm

As perlu (tumpuan kiri)     : 146.618 mm2

As perlu (Lapangan )        : 168.399 mm2

As perlu (tumpuan kanan) : 146.618 mm2

As min                            : 223.563 mm2

Desain dari EBC, didapat :

As terpasang (tumpuankiri) : 265.465 mm2 ( 2 D 13) > As min = 223.53… (OK!)

As terpasang (lapangan)     : 265.465 mm2 ( 2 D 13) > As min = 223.53… (OK!)

As terpasang (tumpuankan) : 265.465 mm2 ( 2 D 13) > As min = 223.53… (OK!)

Verifikasi :

Dengan melihat as perlu yang lebih kecil dari as min serta tinggi minimal yang diperlukan oleh balok (dmin) = 14,65 cm (padahal balok kita tingginya = 30 cm), maka balok ini masih dimungkinkan untuk diperkecil lagi,  misalkan saja diganti dengan ukuran 20/25. (Tapi ini masih asumsi lho ya,… masih perlu ditinjau lagi secara ‘casepercase’)jika memang jadi dirubah, maka balok tersebut harus sobat cek dulu terhadap lendutan.

(Catatan : Perlu tidaknya balok dicek terhadap lendutan, monggo sobat lihat di SK-SNI)

 

  • Check kekuatan balok terhadap momen ultimate

dt2

Dari tabel bisa dilihat bahwa momen rencana balok lebih besar daripada momen ultimatenya (OK!)

Verfikasi : OK!

 

  • Check kondisi beton dan baja tulangan

dt3

Dari tabel bisa dilihat bahwa regangan beton masih jauh dari regangan maksimumnya = (0.0002 0.0231). Karena tulangan meleleh, maka balok akan melendut, dan ini yang diharapkan, yaitu adanya tanda sebelum kehancuran beton.

Jadi jangan khawatir sob,… seandainyapun beban diatas balok ini diperbesar, jauh-jauh sebelum balok ini mencapai regangan maksimalnya (akan runtuh), balok ini akan menunjukan perilaku daktail dengan membentuk lendutan yang membesar pada balok. Jadi setidak-tidaknya sobat punya ‘tanda pegangan’ untuk kabur sewaktu-waktu seandainya balok ini akan runtuh wkwkwk 😀

Verfikasi : OK!

 

  • Check balok terhadap gaya geser

  dt4

Verifikasi : OK!

  •  Check balok terhadap Torsi

dt5

Verifikasi : OK!

Untuk yang lainnya,silahkan di verifikasi sendiri, ya,… mungkin ada item dari saya yang terlewat hehe 🙂

—————————————————————————————————————————————–

Okey sobat, sampai sini dulu pembahasan mengenai EBC ini, mohon maaf jika penjelasan yang diberikan terlalu singkat, karena jika penjelasan didetail secara per item maka uraian akan menjadi terlalu panjang, jadi monggo,… silahkan jika ada sobat yang ingin bertanya seputar spreadsheet ini. Jika ada pertanyaan dari sobat yang bisa saya jawab maka akan saya jawab, tapi jika tidak, maka akan saya jadikan PR (harap maklum, soalnya saya sendiri juga masih belajar ^_^).   

bagi yang ingin mendownload file EBC silahkan klik link dibawah ini

File : EBC.XLS

EBC boleh sobat edit dan dimodif sedemikian rupa untuk kemudahan. Jika ada kritik, saran atau koreksi seputar spreadsheet ini, dengan senang hati saya akan menerimanya.

Silahkan sobat sampaikan langsung via email atau blog

email q : maestromusic.lutfi@gmail.com

(Nb : saya sangat berharap koreksi dan masukan dari rekan2 semuanya ^_^)

—————————————————————————————————————————————–

 

Oh iya sobat,… berikut adalah beberapa proyek yang pernah saya kerjakan dengan menggunakan EBC, diantaranya adalah :

 

 Image 2 (Balai Pertemuan Gedung Barunawati – Surabaya)

Analisa Struktur dengan SAP 2000 – Design Tulangan Balok Dengan Spreadsheet EBC

 

PERSPEKTIF PENUH (Kantor Pelabuhan – Bagendang – Sampit)

Analisa Struktur dengan STAAD Pro – Design Tulangan Balok Dengan Spreadsheet EBC

 

 

Image 3 (Rumah tinggal 3 Lantai – Siwalankerto Indah – Surabaya)

Analisa Struktur dengan STAAD Pro – Design Tulangan Balok Dengan Spreadsheet EBC

Spreadsheet Excel, Analisa crack pada beton bertulang

 

Dewasa ini penggunaan material beton sebagai material bangunan sangat dominan dibanding material lain dalam industri konstruksi. Jika dibandingkan dengan material lain seperti baja ataupun kayu, material beton jelas memiliki keunggulan yang tidak dimiliki oleh material lain selain daripadanya. Beberapa keunggulan material beton adalah

1. Mempunyai kekuatan dan kekakuan tinggi,

2. murah, mudah dibentuk dan tanpa memerlukan biaya perawatan

Tidak ada sesuatu yang sempurna. Adanya kelebihan pasti akan diiringi pula dengan adanya kekurangan. Demikian juga dengan material ini, Selain memiliki keunggulan-keunggulan seperti diatas, ternyata material ini mempunyai beberapa kekurangan antara lain adalah lemah dalam menahan beban tarik, oleh karena itu penggunaan material beton pada struktur sering disertai dengan penggunaan material lain yang mempunyai kuat tarik tinggi. Dalam praktek beton sering dikomposisikan dengan material baja tulangan sebagai upaya untuk meningkatkan kemampuan struktur beton dalam menahan tarik.   

Lemahnya beton terhadap tarik menjadi menjadi penyebab utama terjadinya retak (crack) pada struktur beton bertulang dalam kondisi beban kerja.

Perubahan volume beton ke arah yang lebih kecil (shrinkage) akibat mengeringnya beton pada waktu mengeras. adalah salah satu faktor yang menyebabkan terjadinya retak pada beton. Retak dapat berbentuk retak rambut atau retak antara 1-2 mm dan biasanya retak ini dikategorikan retak non-struktural.

Beberapa hal yang menyebabkan terjadinya shrinkage/susut

Penyebabnya :
1. Faktor air semen (FAC) terlalu tinggi.
2. Pemakaian semen terlalu banyak.
3. Modulus kehalusan agregat tidak memenuhi syarat.
4. Intensitas pengadukan yang kurang baik.
5. Kelembaban udara.

Penanggulangannya :
Penggunaan curing compound untuk memperkecil resiko shrinkage cracking.
Type curing compound yang dapat digunakan :
1. Sodium silicate based material.
~ Meresap ke dalam beton.
~ Mempercepat proses hidrasi semen yang ada di permukaan struktur sehingga retak akibat susut beton dapat di hindari.
~ Agar lebih sempurna, penggunaan/penyemprotan harus diulang antara 1-3 hari.
2. Wax based material.
~ Membentuk lapisan membran di permukaan beton.
~ Lapisan membrane tersebut akan mengatur kecepatan evaporasi.
~ Untuk aplikasi beam, coloum, menggunakan clear curing compound.
~ Untuk aplikasi jalan beton semen sebaiknya menggunakan white pigmented

Retak yang terjadi pada struktur beton bertulang tentu akan mempengaruhi perilaku struktur tersebut. Kondisi demikian mengakibatkan perilaku struktur beton bertulang lebih komplek dibanding struktur lain. Untuk mendapatkan data dan informasi yang benar tentang perilaku struktur beton bertulang perlu dilakukan suatu kajian secara mendalam.

Berikut adalah Spreadsheet Excel untuk menganalisa lebar retak yang terjadi pada balok beton,.

Nb : Perlu diingat, program Excel ini dibuat untuk tujuan pendidikan & pelatihan, pembuat program tidak bertanggungjawab terhadap penggunaan hasil keluaran program, pengguna wajib memeriksa validitas dari hasil output program Excel ini.

G8 Input Data

 

G9 (Output)  Output Data

Sekian…

Semoga bermanfaat…  🙂

Spreadsheet Excel, Perencanaan Pondasi Telapak Bujur Sangkar

Microsoft Excel adalah program spreadsheet atau pengolah angka yang paling populer dan banyak digunakan saat ini. Disukai banyak kalangan karena pengoperasiannya yang relatif mudah dengan hasil yang memuaskan. Dalam lingkup Teknik Sipil, Excel sudah mendapat tempat tersendiri bagi profesi mereka.

Salah satu kekuatan Excel adalah bahasa macro-nya. Hal ini tentu tidak lepas dari aplikasi Visual Basic (Visual Basic for Application) yang bekerja dengan Excel. Macro yang selama ini kita kenal, umumnya digunakan otomasi langkah-langkah pekerjaan dalam aplikasi perkantoran. Namun dalam hal lain, juga dapat digunakan untuk aplikasi perhitungan. Disini terdapat kombinasi yang unik antara spreadsheet dan Visual Basic yang ternyata banyak memberikan kemudahan bagi pemakai jika membuat program perhitungan Excel.

Nah…berikut adalah salah satu aplikasi excel yang diterapkan pada bidang teknik sipil, dimana kemampuan Excel dalam mengolah teks, angka, rumus, database dan grafik akan dimanfaatkan sepenuhnya untuk membuat spreadsheet desain Pondasi telapak bujur sangkar

 

Screenshoot Spreadsheet

 

A1 (Input Data)

 

G6

(Skema Hitung Fondasi)

 

G5

(Analisa Perhitungan)

 

G2

(Desain Tulangan)

 

G4

(Lampiran Peraturan SNI 03-2847-2002Yang terkait)

 

G7

  (Laporan singkat perhitungan)

 

isolated-footing Landasan Teori (Dasar Perencanaan)

Dalam mendesain pondasi telapak, perencanaan pondasi harus mencakup segala aspek agar terjamin keamanan sesuai dengan persyaratan yang berlaku, misalnya, penentuan dimensi pondasi meliputi panjang, lebar dan tebal pondasi, kemudian jumlah dan jarak tulangan yang harus dipasang pada pondasi.

Adapun peraturan untuk perencanaan pondasi telapak tercantum pada SNI 03-2847-2002 merujuk pada pasal 13.12 dan pasal 17.

Jika sobat kampuz ada yang belum memiliki peraturan tersebut. Silahkan klik disini untuk download SNI 03-2847-2002

 

Garis besar perencaan Fondasi Telapak

1. Menentukan Dimensi Pondasi

hal yang paling penting dalam merencanakan pondasi adalah menentukan ukuran dimensi, dimana ukuran panjang, lebar dan ketebalan telapak pondasi harus ditetapkan sedemikian rupa sehingga tegangan yang terjadi pada dasar pondasi tidak melebihi daya dukung tanah dibawahnya

2. Mengontrol Kuat Geser 1 Arah

kerusakan akibat gaya geser 1 arah terjadi pada keadaan dimana mula-mula terjadi retak miring pada daerah beton tarik (seperti creep) lihat gambar dibawah. Akibat distribusi beban vertikal dari kolom (Pu kolom) yang diteruskan ke pondasi, maka pada bagian dasar pondasi mengalami tegangan. Akibat tegangan ini, tanah memberikan respon berupa gaya reaksi vertikal keatas (gaya geser) sebagai akibat dari adanya gaya aksi tersebut. Kombinasi beban vertikal Pu kolom (kebawah) dan gaya geser tekanan tanah keatas berlangsung sedemikian rupa sehingga sedikit demi sedikit membuat retak miring tadi semakin menjalar keatas sehingga membuat daerah beton tekan semakin mengecil. Nah…dengan semakin mengecilnya daerah beton tekan ini maka mengakibatkan beton tidak mampu menahan beban geser tanah yang menyodok/mendorong keatas, akibatnya beton tekan akan mengalami keruntuhan.

 

g2

Kerusakan pondasi yang diakibatkan oleh gaya geser 1 arah ini biasanya terjadi jika nilai perbandingan antara nilai a dan nilai d cukup kecil, dan selain itu, mutu beton yang digunakan juga kurang baik sehingga mengurangi kemampuan beton dalam menahan beban tekan

 

g1 

Retak pondasi yang diakibatkan oleh gaya geser 1 arah, biasanya terjadi pada jarak +/- d dari muka kolom, dimana d adalah tebal efektif podasi

3. Mengontrol Kuat Geser 2 Arah (Geser Pons)

Bisa disebut juga dengan geser pons (punching shear), dimana akibat gaya ini, pondasi mengalami kerusakan disekeliling kolom dengan jarak kurang lebih d/2

 

g3

 

4. Menghitung Tulangan Pondasi

Beban yang bekerja pada pondasi adalah beban dari reaksi tegangan tanah yang bergerak vertikal keatas akibat adanya gaya aksi vertikal kebawah (Pu) yang disalurkan oleh kolom. Tulangan pondasi dihitung berdasarkan momen maksimal yang terjadi pada pondasi dengan asumsi bahwa pondasi dianggap pelat yang terjepit dibagian tepi-tepi kolom.

Menurut SNI 03-2847-2002, untuk tulangan pondasi telapak berbentuk bujursangkar harus disebar merata pada seluruh lebar pondasi (lihat pasal 17.4.3)

5. Mengontrol Daya Dukung Pondasi

Pondasi sebagai struktur bangunan bawah yang menyangga kolom yang memikul beban-beban diatasnya (bangunan atas) harus mampu menahan beban axial terfaktor (Pu) dari kolom tersebut. Maka dari itu beban dari Pu diisyaratkan tidak boleh melebihi daya dukung dari pondasi (Pup) yang dirumuskan sebagai berikut :

Pu < Pup

Pup = Ø x 0,85 x fc’ x A

Dimana :

Pu  = Gaya aksial terfaktor kolom……. (N)

Pup  = Daya dukung pondasi yang dibebani……. (N)

fc’ = Mutu beton yang diisyaratkan……. (Mpa)

A = Luas daerah yang dibebani…….(mm2)

 

Untuk contoh penggunaan spreadsheet ini, akan diulas pada posting  berikutnya.

Dasar teori spreadsheet perhitungan pondasi telapak bujursangkar ini mengacu pada SNI 03-2487-2002, dan alur langkah perhitungan ada dalam bagan alir perencanaan pondasi yang ada dalam spreadsheet tersebut.

Untuk download Spreadsheet Klik pada icon rumah dibawah ini…….

  .csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, “Courier New”, courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
Download spreadsheet

Sekian…

Dan semoga bermanfaat…

Excel Untuk Teknik Sipil (Part 1)

Microsoft Excel adalah program spreadsheet atau pengolah angka yang paling populer dan banyak digunakan saat ini. Disukai banyak kalangan karena pengoperasiannya yang relatif mudah dengan hasil yang memuaskan. Dalam lingkup Teknik Sipil, Excel sudah mendapat tempat tersendiri bagi profesi mereka.

Salah satu kekuatan Excel adalah bahasa macro-nya. Hal ini tentu tidak lepas dari aplikasi Visual Basic (Visual Basic for Application) yang bekerja dengan Excel. Macro yang selama ini kita kenal, umumnya digunakan otomasi langkah-langkah pekerjaan dalam aplikasi perkantoran. Namun dalam hal lain, juga dapat digunakan untuk aplikasi perhitungan. Disini terdapat kombinasi yang unik antara spreadsheet dan Visual Basic yang ternyata banyak memberikan kemudahan bagi pemakai jika membuat program perhitungan Excel.

Bekerja dengan Excel berarti kita menginginkan suatu penyelesaian yang cepat dan praktis, namun diharapkan dengan fasilitas yang maksimal pula. Jadi, tinggal bagaimana memanfaatkan fasilitas-fasilitas yang ada sebaik mungkin. Tidak ada aturan baku memang dari Microsoft tentang aplikasi Excel untuk rekayasa teknik. Sebab, apabila kombinasi antara fungsi-fungsi Excel dan aplikasi VB diterapkan, aplikasinya akan sangat luas.

Nah…..! berikut ini adalah salah satu contoh dari aplikasi Excel dibidang Teknik Sipil….yang penulis ambil dari www.migas.com

1. Slab, Beam, Column & Foundation Design

Download Spreadsheet : Slab, Beam, Column & Foundation Design ( Klik disini)

a1

a2  a3

2. Steel, Column Base Plate Analysis

Download Spreadsheet : Steel, Column Base Plate Analysis (Klik disini)

a4

3. Steel, Beam & Column Analysis

Download Spreadsheet : Steel, Beam & Column Analysis (Klik disini)

a5a6

4. Beam End Connection Using Beam Tab

Download Spreadsheet : Beam End Connection Using Beam Tab (Klik disini)

a7

5. Beam End Connection Using Clip Angels

Download Spreadsheet : Beam End Connection Using Clip Angels (Klik disini)

a8

6. Continuous Concrete Beams

Download Spreadsheet : Continuous Concrete Beams (Klik disini)

a9

7. SmartBeam Composite Castellated Beam Design

Download Spreadsheet : SmartBeam Composite Castellated Beam Design (Klik disini)

a10

8. SmartBeam Non-Composite Castellated Design

Download Spreadsheet : SmartBeam Non-Composite Castellated Design (Klik disini)

a11

9. Wave And Wind Rose

Download Spreadsheet : Wave And Wind Rose (Klik disini)

a12

Semoga Bermanfaat….!